Skip to main content

Chat with a Genie Space

This app uses the AI/BI Genie Conversations API to let users ask questions about your data for instant insights (answers and table-like output). You are also able to collect their feedback on the responses. Visualizations aren't yet supported in the API.

Code snippet

Refer to the Streamlit Cookbook Genie source code for the full implementation.

app.py
import streamlit as st
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.dashboards import GenieFeedbackRating
import pandas as pd

w = WorkspaceClient()

genie_space_id = "01efe16a65e21836acefb797ae6a8fe4"


def display_message(message):
if "content" in message:
st.markdown(message["content"])
if "data" in message:
st.dataframe(message["data"])
if "code" in message:
with st.expander("Show generated code"):
st.code(message["code"], language="sql", wrap_lines=True)


def get_query_result(statement_id):
# For simplicity, let's say data fits in one chunk, query.manifest.total_chunk_count = 1

result = w.statement_execution.get_statement(statement_id)
return pd.DataFrame(
result.result.data_array, columns=[i.name for i in result.manifest.schema.columns]
)


def collect_feedback(message_id: str):
rating = st.feedback("thumbs", key=f"feedback_{message_id}")
mapping = {1: GenieFeedbackRating.POSITIVE, 0: GenieFeedbackRating.NEGATIVE}
if rating and message["message_id"]:
w.genie.send_message_feedback(
genie_space_id, st.session_state.conversation_id, message["message_id"], mapping[rating]
)


def process_genie_response(response):
for i in response.attachments:
if i.text:
message = {"role": "assistant", "content": i.text.content}
display_message(message)
elif i.query:
data = get_query_result(response.query_result.statement_id)
message = {
"role": "assistant", "content": i.query.description, "data": data, "code": i.query.query
}
display_message(message)
collect_feedback(response.message_id)


if prompt := st.chat_input("Ask your question..."):
# Refer to actual app code for chat history persistence on rerun

st.chat_message("user").markdown(prompt)

with st.chat_message("assistant"):
if st.session_state.get("conversation_id"):
conversation = w.genie.create_message_and_wait(
genie_space_id, st.session_state.conversation_id, prompt
)
process_genie_response(conversation)
else:
conversation = w.genie.start_conversation_and_wait(genie_space_id, prompt)
process_genie_response(conversation)
info

Copy and paste the Genie space ID from the Genie UI URL as rooms/SPACE-ID?o=.

Resources

Permissions

Your app service principal needs the following permissions:

  • SELECT on the Unity Catalog table
  • CAN USE the SQL warehouse
  • CAN VIEW the Genie Space

Dependencies

requirements.txt
streamlit
databricks-sdk
pandas